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Introduction

 In the ubiquitous environment applications are 
sensitive to the external conditions

 Self-adaptive systems aim at adjust various 
artifacts or attributes in response to changes in the artifacts or attributes in response to changes in the 
self and in the context of a software system
 Self is the whole body of software, mostly implemented 

in several layers (e.g. new requirements)

 Context is everything in the operating environment that 
affects the system properties and its behavior



System Evolution

 Software engineer defines a set of system 
alternatives at design-time (having in mind the 
possible contexts)….

 … But new unforeseen contexts may appear at run-
time (New resources, new values for old resources, time (New resources, new values for old resources, 
etc…) 

 The user may specify a new requirements which 
represents his new need in the unforeseen context

 At run-time the set of system alternatives may have 
to be augmented to satisfy the new requirement



High-assurance

 To prevent the system incorrect behavior the evolution 
has to be supported by validation mechanisms
 At design time: we have to validate the known system 

alternatives

At run-time: we have to validate new system alternatives At run-time: we have to validate new system alternatives

 Considering actual system model (code) can better 
prevent the system incorrect behavior than considering 
high-level models
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Run-time High-Assurance

 A new definition:
 “High-assurance provides evidence that the system satisfies 

continuously its functional or non-functional requirements thus 
maintaining the user’s expectations despite predictable and 
unpredictable context variations”

 Unpredictable context variation Unpredictable context variation

 New requirements at run-time

 Run-time assurance techniques for a perpetual 
assessment of un-anticipated evolutions [ChLeGi09] 

[ChLeGi09] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee, editors. Software Engineering for Self-

Adaptive Systems,  volume 5525 of LNCS, 2009



Run-time High-Assurance

 In the literature there are many attempts of 
evaluating high-assurance at design-time for 
adaptive systems
 Discovering miss-behaving requirements [AlMoK09] 

 Model checking alternative behaviors  Model checking alternative behaviors [ClHe11] 

 Almost, no support for run-time high-assurance 
activities over run-time evolved requirements
 Run-time model checker for evolving probabilistic 

models [FiGh11] 

 No support for run-time high-assurance of actual 
(code) system models



Motivating Scenario

 E-Health distributed application to monitor vital parameters 
belonging to elderly people

 Probes sense patient information whereas the home gateway 
transmit them to the hospital

 Doctors visualize the trends of pulse oximetry and heart rate  Doctors visualize the trends of pulse oximetry and heart rate 
through PDA and desktop devices

 Adaptive behavior:
 Set of system alternatives to visualize the vital parameters at the 

doctor’s device as textual or graphical representation (possibly real-
time)

 Each alternative 
 has a different requirements specification

 consume a certain amount of resources to be provided by the environment (e.g. 
memory, CPU, etc…)
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Assurance Framework

 Supports the consistent evolution of adaptive 
applications starting from the requirement level

 Supports design-time and run-time evolutions

 System variability can be expressed following the  System variability can be expressed following the 
Software Product Line Engineering perspective 
(SPLE)

 Supports a formal definition of high-assurance



Evolution Taxonomy (1/2)



Evolution Taxonomy (2/2)

 Foreseen Evolution: 
foreseen context variations                   among statically 
analyzed system alternatives the framework choose the 
most suitable [MoLi11] 

 Unforeseen Evolution: 
unforeseen context variation                 switching towards unforeseen context variation                 switching towards 
an un-anticipated system alternative which satisfies a new 
requirement (@ run-time)

[MoLi11] M. Mori, F. Li, C. Dorn , P. Inverardi, S. Dustdar. “Leveraging State-based User Preferences in Context-aware

Reconfigurations for Self-adaptive Systems”. International Conference in Software Engineering and Formal Methods

(SEFM). Montevideo, 2011



Requirements Taxonomy

 A concern is a matter of interest in a system
 The requirement taxonomy is created by the 

taxonomy of concerns:
 (i) Functional requirements           functional concerns

(ii) Performance requirements          performance  (ii) Performance requirements          performance 
concerns

 (iii) Quality requirements           quality concerns

 Constraint requirements restrict the solution space of 
meeting (i), (ii), (iii) [GL07]

[GL07] M. Glinz. On non-functional requirements. In Requirements Engineering Conference, 2007. RE’07. 
15th IEEE International, pages 21–26, 2007



System Notation (1/2)

 System variability can be expressed following the Software Product 
Line Engineering perspective (SPLE) [KeKu98] 

 The single unit, the so called feature, represents the smaller part of a 
service that can be perceived by a user

 Features are combined into configurations in order to produce the  Features are combined into configurations in order to produce the 
space of system alternatives

 Inspired by the SPLE we adopt the notion of feature interaction 
phenomenon as our notion of high-assurance

 A system configuration shows a feature interaction phenomena if its 
features run correctly in isolation but they give rise to undesired 
behavior when jointly executed

[KeKu98] D. O. Keck and P. J. Kuhn. The feature and service interaction problem in telecommunications 
systems. a survey. IEEE TSE, 24(10):779–796, 1998



System Notation (2/2)

 System is a set of unit of behavior defined as triple (R,I,C) [ClHe08]

where:
 R is a functional, performance or quality requirement (context 

independent)
 I is the code implementation (e.g. Java)
 C: constraint requirement (context dependent)

 A configuration                          is obtained by combining a subset 
of features F

 We assume to have an abstract union operator to combine features, 
which is expressed in terms of union operator for R, I and C
 Given two features                      and                        their union is 

defined as:

[ClHe08] A. Classen, P. Heymans, and P.-Y. Schobbens. What’s in a feature: A requirements engineering  perspective. In

FASE, pages 16–30, 2008

 FFFF CIRG ,,

 1111 ,, CIRf   2222 ,, CIRf 

 21211121 ,, CCIIRRff CIRf  



Example: Feature
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ngraphOxygepublic  class GraphOxViewer{
. . .

I ngraphOxyge

. . .
public void viewGraphOx (Graph g) throws Except ion {

Annotation.resources (”mem(50) , CPUClockRate (1000)”);
for (int i = 0; i<10; i++){

XYDataItem dataOx = OximetryRetr.getOximetryData();
dataVectOx .add (dataOx);

}
g.DisplayGraph (dataVectOx);
outcome = Checker.Check(g.currData, dataVectOx);
if (!outcome ) { throw propertViolation;}

}. . . }

 truenProbeoxygenatio1000KhzteCPUClockRa50memC ngraphOxyge 



Evolution and Execution

 The systems move state by state
 is the internal state portion managed by     which does not affect 

any of the evolution scenarios

 is the portion of external state which addresses the foreseen 
evolution. It represents the current context state

s

 ecs  ,,

c

I

 is the portion of external state which addresses the unforeseen 
evolution. It may contains either a new requirement              arising from 
the user or a requirement to delete               .   

 Whenever no unforeseen evolution is required this portion of 
state is empty

 We assume that a monitor exists that runs in parallel with the 
system
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Evolution and Execution
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Assurance Process (1/3)

 Given a running configuration                         and a new 
feature                                implementing the new 
requirement, we have identified three notions of correctness:
 (i)                   : joint requirement satisfiability
 (ii) : joint context requirement validity in the 

 FFFF CIRG ,,

  xcCC /

NewRF RR 

 NewNewNewNew CIRf ,,

 (ii) : joint context requirement validity in the 
current context state [InMo11]

 (iii) : joint implementation satisfies the joint 
requirement

 We focus on check (iii) which checks the inconsistency at 
implementation level

[InMo11] P. Inverardi and M. Mori. Requirements Models at Run-time to Support Consistent System Evolutions. In

Requirements@Run-time. 2011
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Assurance Process (2/3)

 Given a running configuration                         and a new 
feature                                implementing the new 
requirement, we have identified three notions of correctness:
 (i)                   : joint requirement satisfiability
 (ii) : joint context requirement validity in the 
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 (ii) : joint context requirement validity in the 
current context state [InMo11]

 (iii) : joint implementation satisfies the joint 
requirement

 We focus on check (iii) which checks the inconsistency at 
implementation level

 LTL requirements as R and Java code as I

[InMo11] P. Inverardi and M. Mori. Requirements Models at Run-time to Support Consistent System Evolutions. In

Requirements@Run-time. 2011
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Assurance Process (3/3)

 We exploit the Java Path Finder (JPF) tool [JpfCore] in 
order to validates requirements R with respect to 
Java classes I:
 We have implemented a procedure to check the 

satisfaction of Rsatisfaction of R
 If the result of this check is negative an exception is 

thrown
 JPF checks if at least a path of execution generates un-

handled exceptions 
 If the exception is not thrown in any of the execution 

paths the property is satisfied

[JpfCore] http://babelsh.arc.nasa.gov/hg/jpf/jpf-core



Example: Assurance Process

 A certain configuration       is running at the doctor device to visualize the 
oxygenation data graphically

 A new sensor to detect the respiratory rate is added to the system as a new 
UPnP device

G

 The doctor is notified of the new probe, as a consequence he specifies a 
new requirement:

 R= “Receive and view the respiratory rate data”



Example: Assurance Process

 A certain configuration       is running at the doctor device to visualize the 
oxygenation data graphically

 A new sensor to detect the respiratory rate is added to the system as a new 
UPnP device

G

 The doctor is notified of the new probe, as a consequence he specifies a 
new requirement:

 R= “Receive and view the respiratory rate data”

 Two different features are proposed each one implementing R with a 
different visualization modality:
 []GraphRespRViewer.viewGraphRespR(Graph)→<> GraphRespRViewer.outcome

 []GraphRespRViewer.viewTextRespRate(Text)→ <> TextRespRViewer.outcome



Example: New Feature

 After the invocation of the method “viewGraphRespR” the function 
“Check” attests that the graphical widget contain exactly the 
retrieved data

 Exploiting Java Path Finder we check if at least a path of 
execution leads to the un-handled exception “propertyViolation”



Example:
Consistency Check

 Model checking the 
augmented requirement 
w.r.t. the augmented 
implementation 
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Example: Consistency check

 Java Path Finder finds out a un-handled exception 
which is thrown by the “viewGraphRespR” method

 The graph does not contain exactly the data 
belonging to the respiratory rate but also the data belonging to the respiratory rate but also the data 
belonging to the oxygenation



Conclusion

 We have devised an automatic procedure to check high-
assurance at run-time with JPF

 Pros
 Automatic check to prevent the system from adopting incorrect 

(in-consistent) behavior(in-consistent) behavior
 Consistency checks performed over actual system model (Java 

code)

 Cons
 To check: scalability and performances of the run-time model 

checking 

 As for future work
 Applying our methodology to a comprehensive set of case studies
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