
Model Checking Requirements
at Run-time in Adaptive Systems

Workshop on Assurance for Self-Adaptive Systems

Prof: Paola Inverardi

Università dell'Aquila – Dip. di Informatica

Phd student: Marco Mori
IMT Institute for Advanced Studies Lucca

ASAS 2011

Outline

 The Approach

 Motivating Scenario

 Assurance Framework
 Evolution and Execution Formalization Evolution and Execution Formalization

 Assurance Process
 Example: Assurance Process

 Conclusion

Introduction

 In the ubiquitous environment applications are
sensitive to the external conditions

 Self-adaptive systems aim at adjust various
artifacts or attributes in response to changes in the artifacts or attributes in response to changes in the
self and in the context of a software system
 Self is the whole body of software, mostly implemented

in several layers (e.g. new requirements)

 Context is everything in the operating environment that
affects the system properties and its behavior

System Evolution

 Software engineer defines a set of system
alternatives at design-time (having in mind the
possible contexts)….

 … But new unforeseen contexts may appear at run-
time (New resources, new values for old resources, time (New resources, new values for old resources,
etc…)

 The user may specify a new requirements which
represents his new need in the unforeseen context

 At run-time the set of system alternatives may have
to be augmented to satisfy the new requirement

High-assurance

 To prevent the system incorrect behavior the evolution
has to be supported by validation mechanisms
 At design time: we have to validate the known system

alternatives

At run-time: we have to validate new system alternatives At run-time: we have to validate new system alternatives

 Considering actual system model (code) can better
prevent the system incorrect behavior than considering
high-level models

The Approach

Design-timePredictable
Context Variations

Requirements
specifications

Evolution Validation
supported by

based on

calls for

Implementation
artifacts

based on

The Approach

Run-timeUnpredictable
Context Variations

Requirements
specifications

Evolution Validation
supported by

based on

calls for

New Requirement
Implementation

artifacts

based on

Run-time High-Assurance

 A new definition:
 “High-assurance provides evidence that the system satisfies

continuously its functional or non-functional requirements thus
maintaining the user’s expectations despite predictable and
unpredictable context variations”

 Unpredictable context variation Unpredictable context variation

 New requirements at run-time

 Run-time assurance techniques for a perpetual
assessment of un-anticipated evolutions [ChLeGi09]

[ChLeGi09] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee, editors. Software Engineering for Self-

Adaptive Systems, volume 5525 of LNCS, 2009

Run-time High-Assurance

 In the literature there are many attempts of
evaluating high-assurance at design-time for
adaptive systems
 Discovering miss-behaving requirements [AlMoK09]

 Model checking alternative behaviors Model checking alternative behaviors [ClHe11]

 Almost, no support for run-time high-assurance
activities over run-time evolved requirements
 Run-time model checker for evolving probabilistic

models [FiGh11]

 No support for run-time high-assurance of actual
(code) system models

Motivating Scenario

 E-Health distributed application to monitor vital parameters
belonging to elderly people

 Probes sense patient information whereas the home gateway
transmit them to the hospital

 Doctors visualize the trends of pulse oximetry and heart rate Doctors visualize the trends of pulse oximetry and heart rate
through PDA and desktop devices

 Adaptive behavior:
 Set of system alternatives to visualize the vital parameters at the

doctor’s device as textual or graphical representation (possibly real-
time)

 Each alternative
 has a different requirements specification

 consume a certain amount of resources to be provided by the environment (e.g.
memory, CPU, etc…)

E-Health Architecture

Server
Residential

Geateway (Patient)

Monitoring System
(Probes) Adaptive Application

(Doctor)

Assurance Framework

 Supports the consistent evolution of adaptive
applications starting from the requirement level

 Supports design-time and run-time evolutions

 System variability can be expressed following the System variability can be expressed following the
Software Product Line Engineering perspective
(SPLE)

 Supports a formal definition of high-assurance

Evolution Taxonomy (1/2)

Evolution Taxonomy (2/2)

 Foreseen Evolution:
foreseen context variations among statically
analyzed system alternatives the framework choose the
most suitable [MoLi11]

 Unforeseen Evolution:
unforeseen context variation switching towards unforeseen context variation switching towards
an un-anticipated system alternative which satisfies a new
requirement (@ run-time)

[MoLi11] M. Mori, F. Li, C. Dorn , P. Inverardi, S. Dustdar. “Leveraging State-based User Preferences in Context-aware

Reconfigurations for Self-adaptive Systems”. International Conference in Software Engineering and Formal Methods

(SEFM). Montevideo, 2011

Requirements Taxonomy

 A concern is a matter of interest in a system
 The requirement taxonomy is created by the

taxonomy of concerns:
 (i) Functional requirements functional concerns

(ii) Performance requirements performance (ii) Performance requirements performance
concerns

 (iii) Quality requirements quality concerns

 Constraint requirements restrict the solution space of
meeting (i), (ii), (iii) [GL07]

[GL07] M. Glinz. On non-functional requirements. In Requirements Engineering Conference, 2007. RE’07.
15th IEEE International, pages 21–26, 2007

System Notation (1/2)

 System variability can be expressed following the Software Product
Line Engineering perspective (SPLE) [KeKu98]

 The single unit, the so called feature, represents the smaller part of a
service that can be perceived by a user

 Features are combined into configurations in order to produce the Features are combined into configurations in order to produce the
space of system alternatives

 Inspired by the SPLE we adopt the notion of feature interaction
phenomenon as our notion of high-assurance

 A system configuration shows a feature interaction phenomena if its
features run correctly in isolation but they give rise to undesired
behavior when jointly executed

[KeKu98] D. O. Keck and P. J. Kuhn. The feature and service interaction problem in telecommunications
systems. a survey. IEEE TSE, 24(10):779–796, 1998

System Notation (2/2)

 System is a set of unit of behavior defined as triple (R,I,C) [ClHe08]

where:
 R is a functional, performance or quality requirement (context

independent)
 I is the code implementation (e.g. Java)
 C: constraint requirement (context dependent)

 A configuration is obtained by combining a subset
of features F

 We assume to have an abstract union operator to combine features,
which is expressed in terms of union operator for R, I and C
 Given two features and their union is

defined as:

[ClHe08] A. Classen, P. Heymans, and P.-Y. Schobbens. What’s in a feature: A requirements engineering perspective. In

FASE, pages 16–30, 2008

 FFFF CIRG ,,

 1111 ,, CIRf 2222 ,, CIRf

 21211121 ,, CCIIRRff CIRf

Example: Feature

 outcomewerGraphOxVie

GraphxViewGraphOwerGraphOxVie

.

)(.R ngraphOxyge

ngraphOxygepublic class GraphOxViewer{
. . .

I ngraphOxyge

. . .
public void viewGraphOx (Graph g) throws Except ion {

Annotation.resources (”mem(50) , CPUClockRate (1000)”);
for (int i = 0; i<10; i++){

XYDataItem dataOx = OximetryRetr.getOximetryData();
dataVectOx .add (dataOx);

}
g.DisplayGraph (dataVectOx);
outcome = Checker.Check(g.currData, dataVectOx);
if (!outcome) { throw propertViolation;}

}. . . }

 truenProbeoxygenatio1000KhzteCPUClockRa50memC ngraphOxyge

Evolution and Execution

 The systems move state by state
 is the internal state portion managed by which does not affect

any of the evolution scenarios

 is the portion of external state which addresses the foreseen
evolution. It represents the current context state

s

 ecs ,,

c

I

 is the portion of external state which addresses the unforeseen
evolution. It may contains either a new requirement arising from
the user or a requirement to delete .

 Whenever no unforeseen evolution is required this portion of
state is empty

 We assume that a monitor exists that runs in parallel with the
system

 ,NewR

 ,DelR

e

0e

)(cmonitor

Evolution and Execution

Execution

1Texec

2Texec

Foreseen Evolution

f
exec

Unforeseen Evolution

unf
exec

Assurance Process (1/3)

 Given a running configuration and a new
feature implementing the new
requirement, we have identified three notions of correctness:
 (i) : joint requirement satisfiability
 (ii) : joint context requirement validity in the

 FFFF CIRG ,,

 xcCC /

NewRF RR

 NewNewNewNew CIRf ,,

 (ii) : joint context requirement validity in the
current context state [InMo11]

 (iii) : joint implementation satisfies the joint
requirement

 We focus on check (iii) which checks the inconsistency at
implementation level

[InMo11] P. Inverardi and M. Mori. Requirements Models at Run-time to Support Consistent System Evolutions. In

Requirements@Run-time. 2011

 xcCC sNewCF /

NewIF II NewRF RR

Assurance Process (2/3)

 Given a running configuration and a new
feature implementing the new
requirement, we have identified three notions of correctness:
 (i) : joint requirement satisfiability
 (ii) : joint context requirement validity in the

 FFFF CIRG ,,

 xcCC /

NewRF RR

 NewNewNewNew CIRf ,,

 (ii) : joint context requirement validity in the
current context state [InMo11]

 (iii) : joint implementation satisfies the joint
requirement

 We focus on check (iii) which checks the inconsistency at
implementation level

 LTL requirements as R and Java code as I

[InMo11] P. Inverardi and M. Mori. Requirements Models at Run-time to Support Consistent System Evolutions. In

Requirements@Run-time. 2011

 xcCC sNewCF /

NewIF II NewRF RR

Assurance Process (3/3)

 We exploit the Java Path Finder (JPF) tool [JpfCore] in
order to validates requirements R with respect to
Java classes I:
 We have implemented a procedure to check the

satisfaction of Rsatisfaction of R
 If the result of this check is negative an exception is

thrown
 JPF checks if at least a path of execution generates un-

handled exceptions
 If the exception is not thrown in any of the execution

paths the property is satisfied

[JpfCore] http://babelsh.arc.nasa.gov/hg/jpf/jpf-core

Example: Assurance Process

 A certain configuration is running at the doctor device to visualize the
oxygenation data graphically

 A new sensor to detect the respiratory rate is added to the system as a new
UPnP device

G

 The doctor is notified of the new probe, as a consequence he specifies a
new requirement:

 R= “Receive and view the respiratory rate data”

Example: Assurance Process

 A certain configuration is running at the doctor device to visualize the
oxygenation data graphically

 A new sensor to detect the respiratory rate is added to the system as a new
UPnP device

G

 The doctor is notified of the new probe, as a consequence he specifies a
new requirement:

 R= “Receive and view the respiratory rate data”

 Two different features are proposed each one implementing R with a
different visualization modality:
 []GraphRespRViewer.viewGraphRespR(Graph)→<> GraphRespRViewer.outcome

 []GraphRespRViewer.viewTextRespRate(Text)→ <> TextRespRViewer.outcome

Example: New Feature

 After the invocation of the method “viewGraphRespR” the function
“Check” attests that the graphical widget contain exactly the
retrieved data

 Exploiting Java Path Finder we check if at least a path of
execution leads to the un-handled exception “propertyViolation”

Example:
Consistency Check

 Model checking the
augmented requirement
w.r.t. the augmented
implementation

spRategraphIG II Re spRategraphIG II Re

spRategraphRG RR Re

Example:
Consistency Check

 Model checking the
augmented requirement
w.r.t. the augmented
implementation

spRategraphIG II Re spRategraphIG II Re

spRategraphRG RR Re

Example: Consistency check

 Java Path Finder finds out a un-handled exception
which is thrown by the “viewGraphRespR” method

 The graph does not contain exactly the data
belonging to the respiratory rate but also the data belonging to the respiratory rate but also the data
belonging to the oxygenation

Conclusion

 We have devised an automatic procedure to check high-
assurance at run-time with JPF

 Pros
 Automatic check to prevent the system from adopting incorrect

(in-consistent) behavior(in-consistent) behavior
 Consistency checks performed over actual system model (Java

code)

 Cons
 To check: scalability and performances of the run-time model

checking

 As for future work
 Applying our methodology to a comprehensive set of case studies

References

[AlMoK09] M. Alferez, A. Moreira, U. Kulesza, J. Araujo, R. Mateus, and V.
Amaral. Detecting feature interactions in spl requirements analysis models.
In FOSD, pages 117-123, 2009

[ClHe11] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. Symbolic
model checking of software product lines. In ICSE, pages 321-330, 2011

[FiGh11] A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time efficient [FiGh11] A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time efficient
probabilistic model checking. In ICSE, pages 341-350, 2011

Thanks!

 Questions?

